1:'.\'00;)11'0”(1/ service in the national interest

Noah Evans, Kevin Pedretti, Brian Kocoloski, John Lange, Michael Lang, Patrick G. Bridges

nevans@sandia.gov
6/1/16
F7TN, Us OtrARTENT OF \ 4 o
), EN ERGY ‘NA Sp{ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP
I E——

L

QOutline L

= Application composition and why it matters

= Hobbes: System software support for application
composition

= XASM: Cross Enclave Shared Memory
= Conceptual modifications needed for Hobbes
= Implementation on the Kitten lightweight kernel
= Performance evaluation

= Future work
= Conclusions

L

Composition Use Cases in Next-Generation HPC &

End-to-end science workflows
= Coupled simulation, analysis, and tools
= |n-situ and in-transit analytics
Multi-physics applications
Application Introspection
= Performance analysis, concurrency throttling
= Debugging

This presentation concentrates on co-located simulation
and analytics workloads

r

Why Composition is Important @

= Data movement is
expensive

= Writes to filesystem
especially
= Need to compartmentalize
complexity
= Jamming everything
into one executable is a
pain, fragile

Good! But Application and Visualization have different OS/R requirements

r

Example: SNAP and Spectrum Analysis @

i A o
. | — 02

139

= SNAP

= Neutronics proxy,
based on PARTISN

= Simulates reactor
using sweep3d

= Spectrum analysis
= After each

" seBa
imestep 235 :
Q
92U v
= [wo separate o » m/
processes T~

o
communicating \.géKr

L

QOutline L

= Application composition and why it matters

= Hobbes: System software support for application
composition

= XASM: Cross Enclave Shared Memory
= Conceptual modifications needed for Hobbes

= Implementation for Linux and Kitten lightweight
kernel

= Performance evaluation
= Future work
= Conclusions

Hobbes Project: Systems Software Support g;
for Composition

r

= Application level composition difficult for application writer
= Lots of research on how to support (Adios ’10, Gold-rush ’13)

Enclave OS/Rs

— 34 Node OS/Rs Yy i
! 1

5 Node Virtualization

:] Layers H

Physical Nodes

§

¢

e Goals

e Minimize Data movement in
composition

e Optimizing the scheduling of
composed workloads

Hobbes Project: Why Systems Software Shmﬁw
Support Composition

Producer Consumer

Pinned
Xemem Snapshot

—

Hobbes Project: Why Systems Software Shou
Support Composition

Producer Consumer

Pinned
Xemem Snapshot

—

e Space sharing and time sharing
virtualization using “Enclaves”

Hobbes Project: Why Systems Software Shmﬁm
Support Composition

Producer Consumer

(070)" Pinned

e Space sharing and time sharing « Communicate using
virtualization using “Enclaves” optimized transports

L

QOutline L

= Application composition and why it matters

= Hobbes: System software support for application
composition

= XASM: Cross Enclave Shared Memory
= Conceptual modifications needed for Hobbes
= Implementation on the Kitten lightweight kernel
= Performance evaluation

= Future work
= Conclusions

XASM: Optimizing Data Movement for
Composition

= Transparent: No changes to APlIs

= Consistent: Neither side, producer or consumer, sees
changes made by the other

= Asynchronous: No locking needed

i Producer, Address Space Observer, Address Space i U

. I e e e |
i | | | | | | | | f | | | | | | | | ; ...i i‘ Producer, ||DDSENEF1_1|-- |Dbsewer1_,|i i Producer, Address Space Observer, Address Space
e Vlfoges) | Moot Ueiauges ||| maseassemosmesmairor || A[TTTTIT LT | (CDTTTTTT

) A B ittt bttt 'l Mapped VithalPades Mapped Virthal Pades
i |'_:;_-|_\:_-~;_--- W fita, s . \ . - i . i .- -.] e R # - -
i Producer \| | | | | | | | l i :r __________________________________ i i'l*;'Jl’-'.'-' “I """ [] .]I::I
| modified pages Shared FrysicalPages | || Producery |(Observery|«» (ObDsenvelys|: i | | | | | | | | | e P e
s et | TASM-bassd composite spplication i Sh:ired ph},sl,:m paPES chges |

]

r

Trick: Copy On Write i

physical
process, memory process,

| [PageA &

[L—{ pageB [~—

> pageC —]

= Allows “lazy” copying of data - « No modification = no copy
can avoid the copy in some
situations
= 05 notified when process trying to » Modification incurs the extra cost of a

modify shared page page fault

L

QOutline h

= Application composition and why it matters

= Hobbes: System software support for application
composition

= XASM: Cross Enclave Shared Memory
= Conceptual modifications needed for Hobbes

» Implementation on the Kitten lightweight kernel
= Performance evaluation

= Future work

= Conclusions

Kitten Implementation)

= Implementations heavily dependent on virtual memory
systems

= How are the virtual to physical mappings are maintained
will affect contention and allocation policy

= Need to optimize contention and allocation tradeoffs for
performance

Kitten Virtual Memory ¥

= |n Kitten, user allocates physical memory explicitly
= User chooses own virtual to physical mappings

= Kitten flat-mapped, no page faults!

= Additions to Kitten needed for XASM:
= Add a page fault handler to Kitten

= Add a mechanism to make physical memory pools
available to individual processes

L

e KItteNn XASM

arena map backed regilon anywhere (my aspace, ®ion,

)y

for(i=0; 1 < datalen; 1++)
simulate (datal[i]) ;

aspace copy(id, &dst, 0);

Producer Consumer

e KITtEN XASM

arena map backed regilon anywhere (my aspace, ®ion,

) ;

for(i=0; 1 < datalen; 1++)
simulate (datal[i]) ;

aspace copy(id, &dst, 0);

Producer Consumer

-
pool

e KItteNn XASM

arena map backed regilon anywhere (my aspace, ®ion,

)y

for(i=0; 1 < datalen; 1++)
simulate (datal[i]) ;

aspace copy(i1d, é&dst, 0U);

Producer Consumer

—

region
“ pool .

e KItteNn XASM

arena map backed regilon anywhere (my aspace, ®ion,

)y

for(i=0; 1 < datalen; 1++)
simulate (datal[i]) ;

aspace copy(i1d, é&dst, 0U);

Producer Consumer

>
region
pool

e KItteNn XASM

arena map backed regilon anywhere (my aspace, ®ion,

)y

for(i=0; 1 < datalen; 1++)
simulate (datal[i]) ;

aspace copy(id, &dst, 0);

Producer Consumer

>
region
pool

~_ Kitten XASM

aspace smartmap (xasm 1d, my id, SMARTMAP ALIGN,
SMARTMAP ALIGN) ;
for (i=0; 1 < datalen; 1i++)
analyze (datal[i]);
aspace unsmartmap (xasm id, my 1d, ..);
aspace destroy (xasm 1d);

Producer Consumer

5>
region
POO|

Kitten XASM

for (i= O 1 < datalen; 1i++)

analyze (datal[i]);
aspace unsmartmap (xasm id, my 1d, ..);
aspace destroy (xasm 1d);

Producer Consumer

>
region
pool

Kitten XASM

// CONSUMER

aspace smartmap (xasm 1d, my id, SMARTMAP ALIGN,
SMARTMAP ALIGN) ;
for (i=0; 1 < datalen; 1i++)

analyze (datali1]);

Producer Consumer

-
pool

~_ Kitten XASM

aspace smartmap (xasm 1d, my id, SMARTMAP ALIGN,
SMARTMAP ALIGN) ;
for (i=0; 1 < datalen; 1i++)
analyze (datal[i]);
aspace unsmartmap (xasm id, my 1d, ..);

aspace aestroy(Xasm 14a)y

Producer Consumer

o
pool

L

QOutline L

= Application composition and why it matters

= Hobbes: System software support for application
composition

= Xasm: Transparently Consistent Asynchronous Shared
Memory

= Conceptual modifications need for Hobbes

= Implementation for Linux and Kitten lightweight
kernel

= Performance evaluation
= Future work
= Conclusions

26

L

Performance Evaluation h

= Need to show that it works with minimal performance
overhead

= Questions to answer:
= What is the overhead of page fault handling?

= How does the overhead of Xasm compare to base
case and synchronized shared memory?

L

Experimental Design L

= Sandy bridge 2.2 GHz,12 core, 2 socket system, 24 GB
(Hyper-threading off)
= Hobbes environment on Linux

= Use cycle counter for kernel measurements of page
faults

= SNAP + Spectrum Analysis as macro benchmark

= Compare worst case (xpmem+spin locks), Xasm, best
case (no analytics)

= Inter-enclave on Kitten (6 trials per size)
= X*y*z =96, 200, 324, 490, 768, 6144

Kitten faults less noisy

Distribution of Cycles In Page Fault Handler

1.00- {A\

0.75-
>
2050
8 Operating System
Kitten
/|Linux
0.25-
0.00-
3000 6000 9000 12000

Cycles

r

r

Linux slower 25% of time L

CDF of Cycles In Page Fault Handler

1.00-
D
E) 0.75
o
=
o
@)
§2)
30.50-
L Operating System
% — Kitten
S — Linux
c
o)
o
0.25-
o

0.00- J

5000 10000 15000

Cycles

r

XASM Overhead Negligible Between Processes (&

Time Spent In Situ

Composed Applications

~—~0.010 :
3 ~ SNAP no analytics

c — SNAP w/ Analytics Linux via TCASM
8 ~— SNAP w/ Analytics Linux via XPMEM
O
fQ

=

& 0.005-

i

)

£

|_

0.000-
100 1000

Problem Size (Bytes)

31

r

<4% In Worst Case L

Percentage of Time In Situ

0.03-
H
!
2 | Composed Applications
n : ~ SNAP no analytics
Lo02- 1§ ~ SNAP w/ Analytics Linux via TCASM
o ; = SNAP w/ Analytics Linux via XPMEM
-
= !
© i
)
S
£0.01- , ;
3 N
o g
£\
[]
0.00 . . .

100 1000 10000
Problem Size (Bytes)

32

Address Space Copies Expensive but Still
Manageable

r

Time Spent In Situ (Seconds)

Composed Applications
~+ SNAP Kitten w/ Analytics Linux via XASM

w
1

Time In Situ r(\)Seconds)

—
1

100 1000
Problem Size (x*y*z) 33

Still Less Than 3% of Execution Time with e
Scale

r

Percentage of Time Spent In Situ

* Composed Applications
- SNAP Kitten w/ Analytics Linux via XASM

012-

of Time In Soitu
3

e
g.o
o
o)

Percenta
o
o
w

100 1000
Problem Size (x*y*z)

34
I —

L

QOutline L

= Application composition and why it matters

= Hobbes: System software support for application
composition

= XASM: Transparently Consistent Asynchronous Shared
Memory

= Conceptual modifications need for Hobbes

= Implementation for Linux and Kitten lightweight
kernel

= Performance evaluation
= Future work
= Conclusions

35

Future work) i

= We know what systems software can do in this case but
we don’t know what it should do

= For a Copy on Write mechanism what does fault
tolerance and flow control look like?

= Copy on Write not necessarily good for some HPC
applications

= Anything that touches every page
= Wait free queue instead?
= |ntegrate XASM with in-situ runtimes like ADIOS

L

Conclusions h

Systems software can simplify composition

XASM is one potential mechanism

XASM is working in the Hobbes OS/R stack
Performance is reasonable and using XASM is easy
Potential piece of exascale infrastructure

Thank You

38

